1. Asongu, S. A., Le Roux, S., & Biekpe, N. (2017). Environmental degradation, ICT and inclusive development in Sub-Saharan Africa. Energy Policy, 111, 353-361. [
DOI:10.1016/j.enpol.2017.09.049]
2. Atrkar Roshan, S., & Fathi, Z. (2017). The study of education effects and their comparison on the environment pollution at the different educational levels in selected MENA countries. Journal of Environmental Science and Technology, 19(1), 169-180 (In Persian).
3. Azizi, F., & Moradi, F. (2018). 08 Calculating the index and sub-indices of knowledge-based economy for Iran. Journal of Economic Research and Policies, 26(85), 243-270 (In Persian).
4. Baltagi, B. H. (2005). Econometric analysis of panel data, John Wiley and Sons Ltd. West Sussex, England.
5. Behbodi, D., Mirani, N., & Moharam Judi, N. (2015). Investigation the effect of dimension of the knowledge-based economy (KBE) on output growth in Iran by using gravitational search algorithm and firefly algorithm. Iranian Economic Development Analyses, 3(3), 65-93 (In Persian).
6. Bimonte, S. (2002). Information access, income distribution, and the environmental kuznets curve. Ecological economics, 41(1), 145-156. [
DOI:10.1016/S0921-8009(02)00022-8]
7. Bölük, G., & Mert, M. (2014). Fossil and renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European :union:) countries. Energy, 74, 439-446. [
DOI:10.1016/j.energy.2014.07.008]
8. Brännlund, R., Ghalwash, T., & Nordström, J. (2007). Increased energy efficiency and the rebound effect: Effects on consumption and emissions. Energy economics, 29(1), 1-17. [
DOI:10.1016/j.eneco.2005.09.003]
9. Cheah, I., & Phau, I. (2011). Attitudes towards environmentally friendly products: The influence of ecoliteracy, interpersonal influence and value orientation. Marketing Intelligence & Planning, 29(5), 452-472. [
DOI:10.1108/02634501111153674]
10. Danish Khan, N., Baloch, M. A., Saud, S., & Fatima, T. (2018). The effect of ICT on CO2 emissions in emerging economies: Does the level of income matters? Environmental Science and Pollution Research, 25, 22850-22860. [
DOI:10.1007/s11356-018-2379-2]
11. Danish Zhang, J., Wang, B., & Latif, Z. (2019). Towards cross‐regional sustainable development: The nexus between information and communication technology, energy consumption, and CO2 emissions. Sustainable Development, 27(5), 990-1000. [
DOI:10.1002/sd.2000]
12. Darbidi, M., Delangizan, S., Fatahi, S., & Karimi, M. S. (2020). Impact of innovation on pollution emission of iranian provinces in the framework of environmental kuznets curve (spatial econometric approach). Quarterly Journal of Applied Theories of Economics, 7(3), 71-98 (In Persian).
13. Demuth, H., Beale, M., & Hagan, M. (1992). Neural network toolbox. For Use with MATLAB. The Math Works Inc, 2000.
14. Farzin, Y. H., & Bond, C. A. (2006). Democracy and environmental quality. Journal of Development Economics, 81(1), 213-235 (In Persian). [
DOI:10.1016/j.jdeveco.2005.04.003]
15. Fernández, Y. F., López, M. F., & Blanco, B. O. (2018). Innovation for sustainability: the impact of R&D spending on CO2 emissions. Journal of Cleaner Production, 172, 3459-3467. [
DOI:10.1016/j.jclepro.2017.11.001]
16. Fegheh Majidi, A. & Ebrahimi, S. (2014). Applied panel data economicetrics (using eviews), Noor Alam Publications. First Edition. 175 p. (In Persian).
17. Fotros, M. H., Aghazadeh, A., & Jabraili, S. (2012). Impact of economic growth on the consumption of renewable energy: A comparative study of selected OECD and Non-OECD (Including Iran) countries. Journal of Economic Research and Policies, 19(60), 81-98.
18. Gani, A. (2013). The effect of trade and institutions on pollution in the Arab countries. Journal of International Trade Law and Policy, 12(2), 154-168. [
DOI:10.1108/JITLP-11-2012-0018]
19. Harvey, R. L. (1994). Neural network principles. Prentice-Hall, Inc.
20. Hashmi, R., & Alam, K. (2019). Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: A panel investigation. Journal of Cleaner Production, 231, 1100-1109. [
DOI:10.1016/j.jclepro.2019.05.325]
21. Hettige, H., Huq, M., Pargal, S., & Wheeler, D. (1996). Determinants of pollution abatement in developing countries: Evidence from south and southeast Asia. World development, 24(12), 1891-1904. [
DOI:10.1016/S0305-750X(96)00076-9]
22. Jafariparvizkhanlou, K., Paytkhati Oskoei, S. A., & Azali, R. (2021). Investigating the impact of ICT and economic growth on environmental pollution: Case study of persian gulf countries. The Journal of Economic Studies and Policies, 8(1), 111-138 (In Persian).
23. Jorgenson, A. K. (2003). Consumption and environmental degradation: A cross-national analysis of the ecological footprint. Social Problems, 50(3), 374-394. [
DOI:10.1525/sp.2003.50.3.374]
24. Kao, C. (1999). Spurious regression and residual-based tests for cointegration in panel data. Journal of Econometrics, 90(1), 1-44. [
DOI:10.1016/S0304-4076(98)00023-2]
25. Kao, C., & Chiang, M.-H. (2001). On the estimation and inference of a cointegrated regression in panel data. In Nonstationary panels, panel cointegration, and dynamic panels (179-222). Emerald Group Publishing Limited. [
DOI:10.1016/S0731-9053(00)15007-8]
26. Lotfalipour, M.R., Bagherpour, A., & Asadimanesh, R. (2017).The effect of knowledge-based economy on environmental quality in Iran. The first national conference on modern management studies in Iran, September 2016 (In Persian).
27. Lennerfors, T. T., Fors, P., & van Rooijen, J. (2015). ICT and environmental sustainability in a changing society: The view of ecological world systems theory. Information Technology & People, 28(4), 758-774. [
DOI:10.1108/ITP-09-2014-0219]
28. Madah, M., & Abdollahi, M. (2012). Effect of institutions quality on environment pollution based on kuznets curve using static and dynamic panel data (Case study: Members of organization of the Islamic conference). Iranian Energy Economics, 2(5), 171-186 (In Persian).
29. Mahmoodi, M., Damankeshide, M., & Nessabian, S. (2021).) The effects of knowledge-based economy index on the economic growth of Islamic countries (Martin barrow test model).
30. Mirfakhraddiny, S. H., Babaei Meybodi, H., & Morovati Sharifabadi, A. (2021). Forecast consumption energy of Iran using hybrid model of artificial neural networks and genetic algorithms and compared with traditional methodes. Management Research in Iran, 17(2), 196-222 (In Persian).
31. Park, Y., Meng, F., & Baloch, M. A. (2018). The effect of ICT, financial development, growth, and trade openness on CO2 emissions: An empirical analysis. Environmental Science and Pollution Research, 25, 30708-30719. [
DOI:10.1007/s11356-018-3108-6]
32. Princen, T. (2001). Consumption and its externalities: Where economy meets ecology. Global Environmental Politics, 1(3), 11-30. [
DOI:10.1162/152638001316881386]
33. Schalkoff, R. J. (1997). Artificial neural networks. McGraw-Hill Higher Education.
34. Shabani, Z. D., & Shahnazi, R. (2019). Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis. Energy, 169, 1064-1078. [
DOI:10.1016/j.energy.2018.11.062]
35. Sharma, S., Lingras, P., Xu, F., & Kilburn, P. (2001). Application of neural networks to estimate AADT on low-volume roads. Journal of Transportation Engineering, 127(5), 426-432. [
DOI:10.1061/(ASCE)0733-947X(2001)127:5(426)]
36. Širá, E., Vavrek, R., Kravčáková Vozárová, I., & Kotulič, R. (2020). Knowledge economy indicators and their impact on the sustainable competitiveness of the EU countries. Sustainability, 12(10), 4172. [
DOI:10.3390/su12104172]
37. Stock, J. H., & Watson, M. W. (1993). A simple estimator of cointegrating vectors in higher order integrated systems. Econometrica: Journal of the Econometric Society, 783-820. [
DOI:10.2307/2951763]
38. World Bank. (2008). Measuring knowledge in the worlds economies, knowledge for development, World bank institute. The World Bank's Knowledge Assessment Methodology. available at: www.worldbank.org/kam.
39. World Bank. (2012). Knowledge Assessment Metodology (KAM), World bank institute. available at: www.worldbank.org/kam.
40. World Bank. (2019). Knowledge Assessment Methodology (KAM), World bank institute. available at: www.worldbank.org/kam.
41. Zaied, Y. B. (2013). Long run versus short run analysis of climate change impacts on agriculture. Economic Research Forum Working Papers.
42. Zhang, C., & Liu, C. (2015). The impact of ICT industry on CO2 emissions: A regional analysis in China. Renewable and Sustainable Energy Reviews, 44, 12-19. [
DOI:10.1016/j.rser.2014.12.011]
43. Zhang, J., Chang, Y., Zhang, L., & Li, D. (2018). Do technological innovations promote urban green development?-A spatial econometric analysis of 105 cities in China. Journal of Cleaner Production, 182, 395-403. [
DOI:10.1016/j.jclepro.2018.02.067]
44. Zhang, L., Wang, Z., Zhou, W., Yang, X., Zhao, S., & Li, Q. (2022). GOSAT mapping of global greenhouse gas in 2020 and 2021. Atmosphere, 13(11), 1814. [
DOI:10.3390/atmos13111814]
45. Zhu, Y., Wang, Z., Yang, J., & Zhu, L. (2020). Does renewable energy technological innovation control China's air pollution? A spatial analysis. Journal of Cleaner Production, 250, 119515. [
DOI:10.1016/j.jclepro.2019.119515]