1. Ababaei, B., & Ramezani Etemadi, H. (2014). Water footprint assessment of main cereals in Iran. Agriculture Water Management, 179, 401-411. (In Persian). [
DOI:10.1016/j.agwat.2016.07.016]
2. Ababai, B., & Etedali Ramazani, H. (2014). Estimation of water footprint components in wheat production in Iran. Water and Soil, 29(6), 1458-1468. (In Persian).
3. Abedi, Z., & Soltani, P. (2016). Reducing the carbon footprint is an effective tool to deal with the unusual effects of climate change (by examining industry, agriculture, and construction separately). The 4th International Conference on Environmental Planning and Management. (In Persian).
4. Ahani, E., Ziaee, S., Mohammadi, H., Mardani Najafabadi, M., & Mirzaee, A. (2023). Proposing the structure of a multi-objective mathematical programming model with water-food-energy nexus approach for crop production. Journal of Agricultural Economics & Development, 37(1), 83-102. (In Persian). [
DOI:http://doi.org/10.22067/jead.2022.77691.1147]
5. Al-Saidi, M., & Elagib, N. A. (2017). Towards understanding the integrative approach of the water, energy, and food nexus. Science of The Total Environment, 574, 1131-1139.
https://doi.org/10.1016/j.scitotenv.2016.09.046 [
DOI:https://doi.org/10.1016/j.scitotenv.2016.09.046]
6. Allen, R. G., Pereira, L. S., Smith, M., Raes, D., & Wright, J. L. (2005). FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. Journal of Irrigation and Drainage Engineering, 131(1), 2-13. [
DOI:10.1061/(ASCE)0733-9437(2005)131:1(2)]
7. Bazrafshan, Z., Ramezani Etedali, H., A., & Bazrafshan, A. (2020). Temporal and spatial distribution of water footprint components and virtual water trade in walnut products in Iran. Echo Hydrology, 7(3), 583-593. (In Persian).
8. Daneshgar, H., Bagheri, M., Mardani Najafabadi, M., Alijani, F., & yavari, G. (2021). Effects of climate change on hydrological and economic conditions of Bushkan plain farmers. Agricultural Economics Research, 13(2), 259-280. (In Persian).
9. Emamzadeh, S. M., Forghani, M. A., Karnema, A., & Darbandi, S. (2016). Determining an optimum pattern of mixed planting from organic and non-organic crops about economic and environmental indicators: A case study of cucumber in Kerman, Iran. Information Processing in Agriculture, 3(4), 207-214.
https://doi.org/10.1016/j.inpa.2016.08.001 [
DOI:https://doi.org/10.1016/j.inpa.2016.08.001]
10. Ercin, A. E., & Hoekstra, A. Y. (2014). Water footprint scenarios for 2050: A global analysis. Environment International, 64, 71-82. [
DOI:10.1016/j.envint.2013.11.019]
11. Eslami, Z., Janatrostami S., & Ashrafzadeh A. (2019). Application of modeling in management of water, energy, and food nexus. Journal of Water and Sustainable Development, 6(2), 1-8. (In Persian).
12. Esteve, P., Varela-Ortega, C., Blanco-Gutiérrez, I., & Downing, T. E. (2015). A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecological Economics, 120, 49-58.
https://doi.org/10.1016/j.ecolecon.2015.09.017 [
DOI:https://doi.org/10.1016/j.ecolecon.2015.09.017]
13. Fabiani, S., Vanino, S., Napoli, R., & Nino, P. (2020). Water energy food nexus approach for sustainability assessment at farm level: An experience from an intensive agricultural area in central Italy. Environmental Science & Policy, 104, 1-12. [
DOI:10.1016/j.envsci.2019.10.008]
14. Fu, Y., Zhao, J., Wang, C., Peng, W., & Wang, Q., & Zhang, C. (2018). The virtual water flow of crops between intraregional and interregional in mainland China. Agricultural Water Management, 208, 204-213. [
DOI:10.1016/j.agwat.2018.06.023]
15. Kalbali, E., Ziaee, S., Najafabadi, M. M., & Zakerinia, M. (2021). Approaches to adapting to impacts of climate change in northern Iran: The application of a Hydrogy-Economics model. Journal of Cleaner Production, 280, 124067. [
DOI:10.1016/j.jclepro.2020.124067]
16. Khalili, T., Saraei, M., Babazadeh, H., & Ramezani Etedali., H. (2019). Water resources management of crops in Qom province using water footprint concept. Ecology, 6(4), 1109-1119.
17. Layani, G., & Bakhshoodeh, M. (2022). Effects of climate change on the agricultural sector in the Kheirabad River Basin: Application of WEAP Software. Agricultural Economics Research, 13(4), 208-223. [
DOI:10.30495/JAE.2021.21701.2030 (In Persian).]
18. Lee, S. H., Choi, J. Y., Hur, S. O., Taniguchi, M., Masuhara, N., Kim, K. S., Hyun, S., Choi, E., Sung, J., & Yoo, S. H. (2020). Food-centric interlinkages in agricultural food-energy-water nexus under climate change and irrigation management. Resources, Conservation and Recycling, 163, 105099. [
DOI:10.1016/j.resconrec.2020.105099]
19. Li, M., Fu, Q., Singh, V. P., Ji, Y., Liu, D., Zhang, C., & Li, T. (2019). An optimal modeling approach for managing agricultural water-energy-food nexus under uncertainty. Science of The Total Environment, 651, 1416-1434. [
DOI:10.1016/j.scitotenv.2018.09.291]
20. Madani, K., Agha Kouchak, A., & Mirchi, A. (2016). Iran's socio-economic drought: Challenges of a water-bankrupt nation. Iranian Studies, 49(6), 997-1016. [
DOI:10.1080/00210862.2016.1259286]
21. Mardani Najafabadi, M., Ziaee, S., Nikouei, A., & Ahmadpour Borazjani, M. (2019). Mathematical programming model (MMP) for optimization of regional cropping patterns decisions: A case study. Agricultural Systems, 173, 218-232. [
DOI:10.1016/j.agsy.2019.02.006]
22. Masood, S., Khurshid, N., Haider, M., Khurshid, J., & Khokhar, A. M. (2022). Trade potential of Pakistan with the south Asian Countries: A gravity model approach. Asia Pacific Management Review. [
DOI:10.1016/j.apmrv.2022.02.001]
23. Montaseri, M., Rasouli Majd, N., Behmanesh, J., & Rezaei, H. (2016). Evaluation of agricultural crops water footprint with application of climate change in Urmia lake basin. Journal of Water and Soil, 30(4), 1075-1089. (In Persian).
24. Nikmehr, S., & Zibaeii, M. (2020). Assessing the effects of climate change on hydrological and economic conditions of south Karkheh sub-basin. Agricultural Economics And Development, 34(1), 63-79. [
DOI:10.22067/JEAD2.V33I4.84531 (In Persian).]
25. Piri, H., & Mobaraki, M. (2021). Investigating water footprints and water consumption efficiency of crops of potatoes, sugar beets, tomatoes, and forage corn in different climates of Iran. Journal of Water and Soil Conservation, 27(6), 103-120. [
DOI:10.22069/jwsc.2021.18398.3399]
26. Report in Kashfaroud Basin. (2009). Tous Water Engineers Company, integrated management of water resources.
27. Rezaei Zaman, M., Morid, S., & Delavar, M. (2016). Evaluating climate adaptation strategies on agricultural production in the Siminehrud catchment and inflow into Lake Urmia, Iran using SWAT within an OECD framework. Agricultural Systems, 147, 98-110.
https://doi.org/10.1016/j.agsy.2016.06.001 [
DOI:https://doi.org/10.1016/j.agsy.2016.06.001]
28. Safaee, V., Pourmohamad, Y., & Davari, K. (2021). Integrated approach of water, energy, and food in water resources management (Case study: Mashhad catchment). Iranian Journal of Irrigation and Drainage, 14(5), 1708-1721. (In Persian). [
DOI:20.1001.1.20087942.1399.14.5.18.9.]
29. Sarabi, M., Dastorani, M. T., & Zarin, A. (2020). Investigating the effects of future climate change on temperature and precipitation (Case study: Torgh dam watershed). Journal of Meteorology and Climate Science, 3(1), 63-83. (In Persian).
30. Schlenker, W., & Lobell, D. B. (2010). Robust negative impacts of climate change on African agriculture. Environmental Research Letters, 5(1), 014010. [
DOI:10.1088/1748-9326/5/1/014010]
31. Zhuo, L., & Hoekstra, A. Y. (2017). The effect of different agricultural management practices on irrigation efficiency, water use efficiency, and green and blue water footprint. Frontiers of Agricultural Science and Engineering, 4, 185-194. [
DOI:10.15302/J-FASE-2017149]